Property Name	Condensed Form	Expanded Form
Product Property	$\log_b(mn)$	$\log_b(m) + \log_b(n)$
Division Property	$\log_b\left(\frac{m}{n}\right)$	$\log_b(m) - \log_b(n)$
Power Property	$\log_b\left(m^a ight)$	$a\log_b(m)$

Monday 5/18 Notes: Properties of Logs

Change of Base Formula:
$$\log_b(a) = \frac{\log(a)}{\log(b)}$$
 Inverse Properties: $\frac{\log_b(b^x) = x}{b^{\log_b x} = x}$

Expanding & Condensing Examples

Ex. 1: Expand the following log completely: $\log_5(a^2b^7)$

Ex. 2: Expand the following log completely:
$$\ln\left(\frac{25}{3}\right)$$

Ex. 3: Write the following as a single logarithm: $4\log_4 m + 3\log_4 n - \log_4 p$

Ex. 4: Write the following as a single logarithm: $3\ln 2 - 2\ln 5$

Wednesday 5/20 Notes: Solving with Logs

Solving Techniques:

- Changing to log form
- Changing to exponential form
- Change of base
- Cancel the logs on each side
- Use log properties
- Exponential common bases
- Take the log of both sides please see the optional challenge video

You need to make sure you are checking your answers! You cannot take the log of a negative number.

Change to Log Form

This is a good technique for when you have a number with an exponent = #, you need to get the base & exponent alone 1^{st} .

1.
$$10^{x-1} - 4 = -2$$

Change to Exponent Form

This is a good technique when you have log = #, you need to get the log alone 1^{st} .

2. $3\log_2(x-5) = 9$

Change of Base

This technique is best for solving when you have exponentials that do not have the same base or logs that you cannot plug into your calculator right away.

3. $7^{3x} = 5$

Cancelling Logs on Both Sides

This technique only works when you have $\log = \log$, one log per side with no extra pieces

4. $\ln(x^2 - 20) = \ln(-x)$

Using Log Properties

Sometimes you might need to condense one or both sides to then use another property listed above.

5.
$$\log_6(x+4) + \log_6(2) = 3$$

6. $\log_5(3) - \log_5(x) = \log_5(14)$

Using Exponential Common Bases

This technique only works when both bases can be written using the same base, always use the smallest base.

7.
$$2^{x+1} = 8^{2x}$$

8. $\left(\frac{1}{25}\right)^x = 625^{x-4}$