For each polynomial, identify the degree and the leading coefficient. Then, sketch the end behavior.

1.
$$a(x) = 4x^3 - 8x^6 + x^2$$

2.
$$b(x) = 3x^4 - 4x - 6$$

3.
$$c(x) = -x(x+3)(x-1)$$

1.
$$a(x) = 4x^3 - 8x^6 + x^2$$
 2. $b(x) = 3x^4 - 4x - 6$ 3. $c(x) = -x(x+3)(x-1)$ 4. $d(x) = (x+2)^3(x-7)^2$

Sketch a graph of each polynomial.

5.
$$f(x) = -(x-3)^2(x+8)(x-6)^2(x+1)$$
 6. $g(x) = x^3(x-3)^2(x+4)(x-7)$

6.
$$g(x) = x^3(x-3)^2(x+4)(x-7)^2$$

7.
$$h(x) = -2x(x-6)^3(x+4)^3$$
 8. $j(x) = 5(x+2)^2(x-8)(x-3)$ 9. $n(x) = (x-5)^3(x+3)^6$

8.
$$j(x) = 5(x+2)^2(x-8)(x-3)$$

9.
$$n(x) = (x-5)^3 (x+3)$$

10.
$$m(x) = -3x(x-4)^2(x+2)^3(x-8)$$
 11. $k(x) = 6(2x+1)^5(x-9)^4(2x-7)$

11.
$$k(x) = 6(2x+1)^5(x-9)^4(2x-7)^{-1}$$

12. Find the equation of a cubic function with roots x=3, x=-2 and x=5 and passes through (-1,-48).

13. Find the equation of a fifth-degree function with roots x = 4 (double) and $x = \frac{1}{2}$ (triple) and passes through (0,-32).

14. Find the equation of a sixth-degree function with roots x = -3 (triple), x = 1, $x = \frac{5}{2}$ and x = 0 and passes through (-1,28).

Algebra 2 Polynomial Graphs Name: _____ Period: _____

For each polynomial, identify the degree and the leading coefficient. Then, sketch the end behavior.

1.
$$a(x) = 4x^3 - 8x^6 + x^2$$

2.
$$b(x) = 3x^4 - 4x - 6$$

1.
$$a(x) = 4x^3 - 8x^6 + x^2$$
 2. $b(x) = 3x^4 - 4x - 6$ 3. $c(x) = -x(x+3)(x-1)$ 4. $d(x) = (x+2)^3(x-7)^2$

4.
$$d(x) = (x+2)^3 (x-7)^2$$

Sketch a graph of each polynomial.

5.
$$f(x) = -(x-3)^2(x+8)(x-6)^2(x+1)$$
 6. $g(x) = x^3(x-3)^2(x+4)(x-7)$

6.
$$g(x) = x^3(x-3)^2(x+4)(x-7)$$

7.
$$h(x) = -2x(x-6)^3(x+4)^3$$

7.
$$h(x) = -2x(x-6)^3(x+4)^3$$
 8. $j(x) = 5(x+2)^2(x-8)(x-3)$ 9. $n(x) = (x-5)^3(x+3)^6$

9.
$$n(x) = (x-5)^3 (x+3)^6$$

10.
$$m(x) = -3x(x-4)^2(x+2)^3(x-8)$$

11. $k(x) = 6(2x+1)^5(x-9)^4(2x-7)$

11.
$$k(x) = 6(2x+1)^5(x-9)^4(2x-7)^8$$

12. Find the equation of a cubic function with roots x = 3, x = -2 and x = 5 and passes through (-1, -48).

13. Find the equation of a fifth-degree function with roots x = 4 (double) and $x = \frac{1}{2}$ (triple) and passes through (0,-32).

14. Find the equation of a sixth-degree function with roots x = -3 (triple), x = 1, $x = \frac{5}{2}$ and x = 0 and passes through (-1,28).