Chapter 2A Practice Test

1. A graph has a vertex at (2, -9) and goes through the point (5,27). Find the equation of the graph in vertex form and standard form.

$$27 = a (5-2)^{2} - 9$$

$$30 = 9a$$

$$4 = a$$

$$\begin{aligned} y &= 4(x-2)^2 - 9 \\ y &= 4(x^2 - 4x + 4) - 9 \\ y &= 4x^2 - 10x + 10 - 9 \\ y &= 4x^2 - 10x + 7 \end{aligned}$$

2. The x-intercepts of a graph are $\left(-\frac{5}{2},0\right)$ and $\left(6,0\right)$. The graph goes through $\left(9,-23\right)$. Solve for the equation of the parabola in factored form $y = -\frac{1}{3}(2x+5)(x-4)$

$$y = a(2x+5)(x-6)$$

$$-23 = a(2.9+5)(9-6)$$

$$-23 = a(23)(3) \rightarrow a = -1/3$$

3. The x-intercepts of a graph are (-7,0) and (-10,0). The graph goes through (12,836). Solve for the equation of the parabola in factored form and standard form.

$$83u = a (12 + 7)(12 + 10)$$

 $83u = 418a$
 $2 = a$
 $y = 2(x+7)(x+10)$

$$y = 2(x^2 + 17x + 70)$$

$$y = 2x^2 + 34x + 140$$

Factor the following completely.

5.
$$x^2 - 23x + 132$$

($\chi - 11$)($\chi - 12$)

6.
$$3x^{2}-12x-135$$

 $3(x^{2}-4x-45)$
 $3(x-9)(x+5)$
 $9.4x^{2}-14x-8$
 $2(2x^{2}-7x-4)$
 $2(2x+1)(x-4)$

$$5(2x-7) + 3(2x-7)$$

(5x+3)(2x-7)10. Now solve for the x-intercepts for #4 & #5

$$4 \times 2.x = -2$$

11. Solve by factoring: $21x + 108 = -x^2$

$$X^{2}+21x+108=0$$

 $(x+12)(x+9)=0$
 $X=-12,-9$

- 12. The following equation $f(x) = -6x^2 + 12x + 378$ represents the time it takes for a soccer ball to get kicked into the air and come back down. Height is measured in yards.
 - a. What is the maximum height of the ball?

$$h = -\frac{12}{2(-u)} = 1 \quad y = -u + 12 + 378 = 384$$

b. When does the ball hit the ground?

$$0 = -U \left(x^2 - 2x - U3 \right)$$

$$U = -U \left(x - 9 \right) \left(x + 1 \right)$$

$$\boxed{x = 9}$$
13. State the key features of $y = 12(x + 8)^2 - 5$

Vertex:
$$(-8, -5)$$

Domain:
$$(-\infty, \infty)$$

Range:
$$[-5, \infty)$$

14. Your class is doing a project when you get to launch homemade rockets into the air. Your team's rocket reached its maximum height of 60ft after 7 seconds. After 11 seconds, the rocket is still 52 ft in the air. Find the equation that represents this rocket in vertex and standard form.

V:
$$(7.00)$$
 $y = \alpha(x-7)^2 + 00$
Pt: (11.52) $52 = \alpha(11-7)^2 + 00$
 $-8 = 10\alpha$
 $-1/2 = \alpha$
 $y = -1/2(x-7)^2 + 00$

$$y = -\frac{1}{2}(x^{2} - 14x + 49) + 40$$

$$y = -\frac{1}{2}x^{2} + 7x - 49|_{2} + 40|_{2}$$

$$y = -\frac{1}{2}x^{2} + 7x + \frac{7}{2}$$

15. Sketch a complete graph of $y = -\frac{1}{2}x^2 - x + 4$. Be sure to include the vertex, y-intercept and symmetrical point.

$$N = \frac{-(-1)}{2(-1/2)} - \frac{1}{-1} = -1$$

$$Y = -1/2(1) - (-1) + 4$$

$$Y = -1/2 + 1 + 4$$

$$Y = 4.5$$

- 16. Frank State College is trying to maximize it's profit in the cafeteria. They come up with a price equation for the pasta that is $f(x) = -4x^2 + 200 \text{M} + 92$. How many pasta plates should they sell per night to maximize their profit?

$$h = \frac{-200}{2(-4)} = 25$$

$$y = -4(25)^2 + 200(25) + 92$$

$$y = $12592$$